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The grid: a significant share of the bill

Generation

Distribution Transmission

Renewable
subsides + 
Subsides for 
Islands

VAT

Local taxes 
(Distribution grid
development)
Pensions

French household bill decomposition (Jan. 14)
• Household:

• Generation ~ 60%

• Grid ~ 40%

• Large industrial:
• Generation ~ 87%

• Grid ~ 13%
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Short term economics: the congestion

X~
Pmax(B)=100 MW
C(B)=60 €/MWh

D(B)=100 MW
C(B)=20 000 €/MWh

Capacity = 70 MW

P(B)=30 MW Curtailment(B)=0 MW

Price=30 €/MWh Price=60 €/MWh

Flow=70 MW • The flow on the line is 
limited by its capacity.

• The optimal dispatch 
uses the expensive 
generator (2) but less 
than without the line.

• The price of energy is 
higher "below" the 
congestion (at B).

A B

X~
Pmax(B)=100 MW
C(B)=30 €/MWh

D(B)=10 MW
C(B)=20 000 €/MWh

P(B)=80 MW Curtailment(B)=0 MW

• Gen. cost = 80*30+30*60 = 3 000 €/h < Gen. cost without the line = 100*60 = 6 000 €/h

• Congestion rent = revenue of selling energy in B – cost of buying in A = 70*(60-30) = 900 €/h
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The congestion: graphical example

2 zones with inflexible demand D(A) and D(B): price is low in A, high in B.

Why exchanging?

An export from A to B decreases the overall generation cost.

€/MWh

MWh

pA

€/MWh

MWh

pBA B

D(A)=10 D(B)=100

price(A)=30

price(A)=60
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The congestion: graphical example

Without 
exchanges

With 

exchanges 
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New relatively 
expensive units may 

be started

Most 
expensive 

groups may be 
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Spot Market
Area B

Quantity

Price

Spot Market
Area A

Isolated area 
price difference

The congestion rent
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Spot Market
Area B

Quantity

Price

Spot Market
Area A

Coupled area 
price difference

Import 
volume

Export volume

The congestion rent
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Spot Market
Area A

Quantity

Price

Spot Market
Area BCoupled area 

price difference

Import 
volume

Export volume

Interconnections: Influence of exchanges on market prices: price divergence

Congestion
rent

Supplier
surplus

Buyer
surplus
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Spot Market
Area A

Quantity

Price

Spot Market
Area BPrice 

convergence

Import 
volume

Export volume

The congestion and the congestion rent 
disappear at price convergence
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Long term economics: the saturation
The transmission/generation cost trade-off

• Suppose that A has a really cheap energy source that can be used as base generation (run-of-the-
river hydro power on a river with a constant flow).

• The marginal value of a line is:

+ Fixed cost of base technology in B (in €/MW.year)

+ Variable cost of base technology in B * 1 year

- Fixed c.(hydro in A) (in €/MW.year)

- Var. c.(hydro in A) * 1 year

- Fixed cost of line A to B (in €/MW.year)

- Var. c. of line from A to B * 1 year

• The line should be built if the value is negative (the gain is positive).

• It will be saturated (used to full capacity) during all the year.

• A price difference will appear (= Var. c.(base) – Var. c(hydro) )

• This inframarginal rent allows to pay for the fixed costs of the line.

A
Cheap 
Hydro

B
Large 

demand
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Marginal cost decrease in B (in €/MW.year)

Marginal cost
increase in A

Marginal cost
of line from A to B



Numerical application

• Cost hypothesis for a 400 kV aerial line:
• Lifetime = 60 years, interest rate 7%
• Overnight cost = 1 000 €/MW.km.year
• Variable O&M cost = 1E-3 €/MW.km (1% of losses at 30 €/MWh for a 500 km line)
• Fixed cost ~ 100 €/MW.km.year (1000 km line: 100 000 €/MW.year)
• Variable cost ~ 1E-3 €/MWh.km (1000 km line: 0.1 €/MWh)

• Cost hypothesis for hydro: 450 000 €/MW.year

• Numerical application
400 000 - 450 000 - 100 * length + (16 - 1E-3 * length) * 8760 > 0
Length < 828 km

• Teaching: if cheap power is available for long duration,
long lines can be built.

Technology Fixed costs
(€/MW.year)

Variable costs
(€/MWh)

Hydro 450 000 0

Base 
technology

400 000 16

Peak 
technology

80 000 111

Curtailment 0 20 000
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Transportation/Transmission costs

• According to Percebois & Hansen (Energies, 2012, p68):

• Usually, if produced from oil, gas and coal, electricity is produced near 
consumption centres.

• Nuclear power requires a lot of cooling water (sea or large river).
• However, even without energy price difference, power grids may be built 

only for reliability or mutualization (see next example).

Energy Oil Gas Coal Uranium Electricity

Transportation costs 
(USD/boe.1000 km)

1.7 10 4.3 - > 10
(~17 USD/MWh.1000 km)

Storage costs
(USD/boe.year)

3 6.5
(Storengy: 4-14 €/MWh.year)

0.5 - -
(Annual reservoir water value > 10 €/MWh
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Long term economics: the saturation
A thought example for mutualization

• Suppose 2 areas have inversely correlated demand: D(A,t) + D(B,t) = D

• Suppose that both demands are always equal except for a short 
period of year f (in %) during which D(B,t)=3*D/4 and D(A,t)=D/4

• Without a line:
• The base load generator in A will not produce to full

power during f

• An additional peak generator in B is needed to serve 
the demand during f

• Marginal value of a line:

Fixed c.(peak) + f * (Var c.(peak)-Var c.(base) ) - Fixed c.(line) - f * Var c.(line) (> 0)

• In this case, the line will be saturated (used to full capacity) only during
the period f.

A
Flat 

demand

B
Peaky

demand
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Long term economics: the saturation
A thought example for mutualization

• Numerical application  Build the line if:
• Fixed c.(line) + f * Var c.(line) < 80 000 + f * (111-16)
• 100 000 + f * 0.1 < 80 000 + f * 95
• OK if the duration in year is over 210 hours (2.5% of the time)

• Teachings: lines can be used:
• To build fewer peak units (to flatten the overall demand curve)

 fixed cost reduction

• To avoid curtailment (or to avoid building units to avoid curtailment…)
• In this case the line is saturated only a very small fraction of the time (difficult to recover fixed 

costs). 

• To use units with low variable costs
 variable cost reduction

Even if the long-term marginal costs are identical.

Technology Fixed costs
(€/MW.year)

Variable costs
(€/MWh)

Base technology 400 000 16

Peak technology 80 000 111

Curtailment 0 20 000

Line 100 000 0.1
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Long term economics

• Lines are useful:
• To transmit power from areas with low LTMC to areas with high consumptions 

and high LTMC.

• To mutualize assets between areas with equal LTMC.

• The optimal mix theory relying on Long Term Marginal Cost can be 
extended to the grid:
• Lines are saturated (used to full capacity) during part of the year

• The inframarginal rent compensates exactly the fixed cost

• Lack of lines  congestion appears

• Excess of lines  cost recovery is impossible (Stranded costs)
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How realistic is the theory?
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Long term economics and economies of scale
• According to the theory, anybody could build new lines.

• Practically this is impossible because economies of scale are important.
• A significant part of costs is in deciding to build a network, not to size it.

• Some costs are never proportional to energy, whatever the horizon while the optimal mix 
theory supposes that all costs are proportional to MWh in the long run.

Generation long-term marginal costs
(from Energies, Percebois & Hansen)

LT (i.e. new capacities in ’30)
1930

€
/y

ea
r

MW

€
/M

W
.y

ea
r

MW

Transmission long-term marginal costs

Thousands

?
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Long-term marginal costs and monopolies
• The transmission and distribution segment is a natural monopoly because of 

economies of scales.

• Equivalence between central planning and market is broken: a market would 
underperform (underinvest).

• While still allowing to reach the lowest cost solution, pricing based long-term 
marginal cost does not cover the fixed costs.
• No trivial way to do it (Ramsey-Boiteux…) while not degrading too much the optimum.
• On solution (among other): the connection fee

• Fee paid whatever your use of the grid (and whatever the capacity).
• Implemented in Italy

• Other network monopolies present similar issues:
• Some manage to recover their costs (gas distribution) or even more (water distribution)
• Some do not: state subsidies from tax payer (road and railways transportation network) or 

from another network (wastewater system)
• The power grid manages to recover its costs because of captive usages resulting in an 

inelastic demand.
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Grid studies at RTE

• 225 kV – 400 kV grid (“national” grid):
• Highly meshed, with very variable flow patterns.
• Are considered:

• Avoided curtailment costs
• Avoided congestion costs (reduction of generation costs)
• Additional losses because of the line
No explicit trade off to locate generation close to load: “The grid follows the generation”

• 63 kV - 90 kV grid (“regional” grid):
• Mainly radial, with mainly “grid to load” flow patterns.

• Simplified study, only avoid curtailment costs are considered:
• Determine the “peak” situation where the grid is heavily loaded.

• Build the line according to this "peak" situation.

• A similar method on distribution grids (<20 kV) .

• But distributed generation is changing flow patterns: new methods needed.
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The development of the electricity grid

The grid evolves constantly in order to adapt to the needs

The objective is to respond:
to demands from new customers (connection)

to modifications of energy flows in the grid:
 increase of local consumption

evacuation of decentralized generation

evolution of interregional balances (location of groups 
and consumptions)

to the ageing of assets (renewal/restoration)



The transmission grid balances regional disparities

22

Current
generation
balance

Large gen. deficit
Generation deficit
More or less balanced
Generation excess
Large gen. excess

Region with:

Meteorological conditions  well adapted to 
the development of:

Onshore wind farm
Offshore wind farm
Photovoltaic solar

Tomorrow ?
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Specificity of the development of electricity grids
Grid facilities have long operation duration (> 40 years) with long-term 

consequences as a result

Well define sizing.

The development process is long (~ 10 years)

Occasionally longer than the development time on the customer's 
side.

They must be sufficiently anticipated.

They can be costly and have an increasingly perceived external impact

All developments must be made judiciously.

They respond to needs which are increasingly difficult to foresee 

Low underlying growth.

“Non-wire” alternatives studies to avoid building new lines.



What are the expectations of the different 
participants in relation to the grid?

Technical performance

Reliability

Continuity of supply

Quality of supply

Fluidity of the market and exchanges

Cost

Applied directly to the cost of the electricity delivered

Impact

Environment

Country planning

…

24
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The planning of electricity grids

The planning of the grids consists in defining, in time, the adaptations 
of the grids allowing proper, long-term, least cost operation to be 
ensured

A long-term vision is required in order to: 

Ensure our long-term capacity to respond to the needs

Measure the robustness of each evolution of the grid and prepare 
the “next step”

Have a “guideline” which goes further than short-term studies

Plan for the resources which will be required to build the chosen 
grid (financing, engineering, suppliers)

Planning the grid means imagining the most likely future based on 
credible hypotheses while complying with technical and economical 
constraints.
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The planning of the electricity grids

Planning methodologies depend on the grid 
studied:
Distribution grid (out of scope of this 

presentation)

Transmission grid:
Regional network (63kV-225kV). Interfaced with the 

distribution grid, regional control and command

National network (400kV, but 225 kV sometimes too): strongly 
meshed, centralized control and command.



Long Term Marginal Costs: order of magnitude

Illustration with lines
• 400kV aerial (dble circuit) : [700;1000] k€/km    - [1000; 3000] MW/circuit  ~ 212 €/MW.km

• 225kV aerial (dble circuit) : [400-600]k€/km        - [400; 700] MW/circuit  ~ 454 €/MW.km

• 90kV : [250;450] k€/km - [80; 150] MW/circuit  ~ 3 043 €/MW.km

•Underground cable:

•Important fixed cost (independent of length)

•More expensive (1.5-2 for 225 kV and 400 kV, less for 90 kV)

Cotentin-Maine project: 163km 343M€ among which 96M€ of compensation measures

(1.5M€/km or 2M€/km with the compensation measures)

Cost vs. acceptability

HVDC project: (MW) Distance
(km)

Costs
(M€)

Costs/km
(€/MWkm)

France Spain 2000 65 700 5 385

France Italy 1200 140 1 400 (exp.) 8 333

Strong economies of scale
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Study scheme
• Build up the hypothesis

• Generation, consumption, exchanges

• Grid

• Time slots

• Identify and value the constraints
• Transit, voltage, short-circuit intensity, power quality, stability, environmental 

constraints.

• Find and study the solutions
• Quantitative analysis if possible (explicit in €, or implicit with respect to technical 

limits)

• Qualitative analysis if not, but should cover all issues

• Solution comparison and choice of the preferred strategy (technical and 
economical trade-off)
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Quantitative analysis

Three indicators may be used:

• The NPV (Net Present Value)

• The BCR (Expected Benefit Cost Ratio)

• The PEI (Profit per Euro Invested)
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Quantitative analysis: the NPV
The difference between the costs and the benefits induced for the society (and not for the owner) by the 
project during all its life

NPV

= 

Σ Annual revenues - Σ Annual costs (for the studied reinforcement)

Or (see next slide)

Balance (nothing done) – Balance (studied reinforcement)

NPV = revenues - costs

Investment
year

30

year

M€



Quantitative analysis

• UD(t) = "Cost" of Unserved Demand for year t (Value of Lost Load)

• Cong(t) = Congestion cost for year t

• Losses(t) = Cost of losses for year t

• Expl(t) = Exploitation costs for year t

• Inv(t) = Investment for year t

• i = Discount rate

• T = End of study year

Balance
UD Losses(t)+ Expl(t)

Nothing done

Reinforcement
done

Balance=sum of 
strategy costs

Investment year

31
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The NPV: an optimization tool

It represents the main indicator for the criteria that are convertible 
to money.

Allows to rank strategies

Computed on 15-20 years. If evolutions are uncertains, also computed on 10 
years.

A reinforcement is deemed useful if NPV is positive

Avoiding low performance or too early reinforcement that costs a lot to 
the society.

 The highest the NPV, the more useful the reinforcement.
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Other indicator: the BCR

• In theory, the best date for an investment is the first year for 
which the benefits are higher than the costs:

• Limit of method: OK for regional studies
• BCR > 5,5% involves increasing profits (constant growth) and that the investment will always be
usefull

•If evolutions are more complex, BCR is useless.

33
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Investment

Benefit(N)
BCR(N) 

Expected benefits

Annuitized investment cost

Best date for commissionning
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Risk analysis
• Under uncertain future, it is not enough to determine the optimal 

strategy with fixed hypothesis
• It is needed to identify the most robust strategy with respect to the 

various hypothesis made from available information
• 2 methods are used:

• Worst-case regret minimization (to perform as close to optimum in each scen.)

• Real options
• Strategy and hypothesis are represented as a tree
• For each branch, the NPV is computed.
• At each node, select the strategy with the highest NPV

34

Benefits Regret

Scenario Inv. 1 Inv. 2 Max Inv. 1 Inv. 2

No new generating unit 1850 1900 1900 50 0

2 new generating units 2000 1750 2000 0 250

Worst regret: 50 250
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Some real-world examples
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The building of the European network

• In 1929, George Viel, at the “Compagnie électrique de la Loire et du 
Centre”, proposed:
• to build a 400 kV network in France because losses are reduced at such a 

voltage level

• “To be able to exchange electricity on a seasonal basis with neighbours, and 
to provide emergency assistance”.

• It was not practical at the time (the technology did not exist).

• It really started after World War II. In 1951, UCPTE was founded to 
optimize operation of power plants:
• The problem of spilled water: if hydro generation is too high in a given 

country, export to another country can be made at no cost.
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French 400 kV network, 1962
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The building of the European network

• In the 50s: due to political conditions, Eastern and Western Europe are not 
connected…

• In the 60s: shared primary control / decentralized secondary control.

• In the 90s: connection of Eastern Europe (thus disconnected from Russia).

• But disconnection during more than 10 years of South Eastern Europe due to the 
destruction key substations in Croatia and Bosnia during the former Yugoslavia 
war…

• In the 00s: from UCTE (“Keep the lights on”) to ETSO (“Let the market happen”).

• 2003: blackout in Italy (At least people 4 died*).

• 2006: Major disturbance down to Tunis due to an incident in Northern Germany.

*Electrifying Europe. The power of Europe in the construction of electricity networks, Vincent Lagendijk 39



European transmission network
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Average distance on the transmission grid: ~ 200 km
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European scale analysis: security

• Balancing at the European level:
• Sharing the same frequency allows to share the Frequency 

Containment Reserve (primary reserve).

• “Netting” of the automatic Frequency Restoration Reserve 
(secondary reserve) through IGCC (International Grid 
Control Cooperation), i.e. avoid the activation of secondary 
reserve in opposite directions.

• Overall, hundreds of millions of Euros spared.

UK Continental 
Europe

French share

Primary Reserve 2.25 GW 3 GW 565 MW (19%)
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European scale analysis: adequacy

• Adequacy issues at the European level:
• France cannot ensure adequacy without imports.

• Impact of the German shutdown of nuclear power plant on 
their neighbours.

• The lack of generation capacity in Belgium for the winter 
2014-2015.

• ENTSO-E (European Network of Transmission System 
Operators for Electricity) produces an adequacy 
report in the TYNDP (Ten Year Network Development 
Plan).
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Adequacy: who can “help” France in case of 
curtailment?

Probability of simultaneous curtailement (BP 2016)
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Complementary generation mixes

Hydro

Nuclear

Coal

Wind

Gas

European scale analysis

Today:
Tomorrow:
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European scale analysis: economics
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Illustration with France

(RTE BP 2015)
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Interconnections: use cases
Exchanging power between DK and NO

Excess 
wind 
power

Hydro 
power 
when 
needed 
(low 
wind in 
DK)

NO

DK
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French absorption of German renewable
energy

Export balance on the FR-DE boundary and PV+wind generation in DE
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Source: RTE BP 2011
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Some convergence on average prices.

Average spot prices on power exchanges in 2014 and evolution with respect to 2013

Source: european power exchanges. For NordPool: system price
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(2013)

China’s fast developping grid.
Where do economies of scale stop?

52



China’s global grid: the ultimate economies of scale?

http://www.geidco.org
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